SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "swepub ;pers:(Johansson Börje);conttype:(refereed);srt2:(2010-2011);pers:(Perala R. E.)"

Search: swepub > Johansson Börje > Peer-reviewed > (2010-2011) > Perala R. E.

  • Result 1-4 of 4
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Laukkanen, P., et al. (author)
  • Bismuth-stabilized c(2X6) reconstruction on a InSb(100) substrate : Violation of the electron counting model
  • 2010
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X .- 2469-9950 .- 2469-9969. ; 81:3
  • Journal article (peer-reviewed)abstract
    • By means of scanning tunneling microscopy/spectroscopy (STM/STS), photoelectron spectroscopy, and first-principles calculations, we have studied the bismuth (Bi) adsorbate-stabilized InSb(100) substrate surface which shows a c(2X6) low-energy electron diffraction pattern [thus labeled Bi/InSb(100)c(2X6) surface] and which includes areas with metallic STS curves as well as areas with semiconducting STS curves. The first-principles phase diagram of the Bi/InSb(100) surface demonstrates the presence of the Bi-stabilized metallic c(2X6) reconstruction and semiconducting (4X3) reconstruction depending on the chemical potentials, in good agreement with STS results. The existence of the metallic c(2X6) phase, which does not obey the electron counting model, is attributed to the partial prohibition of the relaxation in the direction perpendicular to dimer rows in the competing reconstructions and the peculiar stability of the Bi-stabilized dimer rows. Based on (i) first-principles phase diagram, (ii) STS results, and (iii) comparison of the measured and calculated STM and photoemission data, we show that the measured Bi/InSb(100)c(2X6) surface includes metallic areas with the stable c(2X6) atomic structure and semiconducting areas with the stable (4X3) atomic structure.
  •  
2.
  • Lang, J. J. K., et al. (author)
  • Tin-stabilized (1 x 2) and (1 x 4) reconstructions on GaAs(100) and InAs(100) studied by scanning tunneling microscopy, photoelectron spectroscopy, and ab initio calculations
  • 2011
  • In: Surface Science. - : Elsevier BV. - 0039-6028 .- 1879-2758. ; 605:9-10, s. 883-888
  • Journal article (peer-reviewed)abstract
    • Tin (Sn) induced (1 x 2) reconstructions on GaAs(100) and InAs(100) substrates have been studied by low energy electron diffraction (LEED), photoelectron spectroscopy, scanning tunneling microscopy/spectroscopy (STM/STS) and ab initio calculations. The comparison of measured and calculated STM images and surface core-level shifts shows that these surfaces can be well described with the energetically stable building blocks that consist of Sn-III dimers. Furthermore, a new Sn-induced (1 x 4) reconstruction was found. In this reconstruction the occupied dangling bonds are closer to each other than in the more symmetric (1 x 2) reconstruction, and it is shown that the (1 x 4) reconstruction is stabilized as the adatom size increases.
  •  
3.
  • Kuzmin, M., et al. (author)
  • Atomic structure of Yb/Si(100)(2X6) : Interrelation between the silicon dimer arrangement and Si 2p photoemission line shape
  • 2010
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 82:11, s. 113302-
  • Journal article (peer-reviewed)abstract
    • Combining photoelectron spectroscopy and density-functional theory calculations, we have studied the atomic geometry of Yb/Si(100)(2 X 6) reconstruction and the mechanisms responsible for its stabilization as well as the influence of this reconstruction on Si 2p core-level photoemission. The analysis of measured and calculated surface core-level shifts supports the recently proposed model of the Yb/Si(100)(2 X 6). It involves, in agreement with valence-band measurements, unbuckled (symmetrical) silicon dimers, leading to unusually narrowed Si 2p line shape as compared to those of related systems. The origin of the symmetrical dimers in the (2 X 6) structure is discussed in the context of previous results in literature.
  •  
4.
  • Kuzmin, M., et al. (author)
  • Surface core-level shifts on Ge(111)c(2 x 8) : Experiment and theory
  • 2011
  • In: Physical Review B. Condensed Matter and Materials Physics. - 1098-0121 .- 1550-235X. ; 83:24, s. 245319-
  • Journal article (peer-reviewed)abstract
    • Combining high-resolution photoelectron spectroscopy and density functional theory (DFT) calculations, 3d photoemission line shape and surface core-level shifts have been reinvestigated on the Ge(111)c(2 x 8) surface. It is found that 3d spectra include, in addition to the bulk and three surface-shifted components reported in literature, a component that was not identified in earlier measurements with a lower resolution. The detailed interpretation of these spectra and their line shape is made on the basis of DFT calculations. It is shown that the lowest binding energy component is due to the rest atoms. The higher binding energy emission is caused by the adatoms and the third-layer atoms that are below the adatoms. Finally, the two other surface components originate from the first- and second-layer atoms. The screening effects in the Ge(111)c(2 x 8) are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-4 of 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view